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Lie brackets on nonlinear systems—which capture the curvature of their dynamics—describe
the net effects of oscillatory inputs [1, 2]. This principle is especially useful for understanding and
controlling the motion of locomoting systems—e.g., swimmers or crawlers—whose interaction with
the environment is distributed over the body rather than being concentrated at a well-anchored
foot. In recent years, we (Hatton and collaborators) have built this Lie bracket principle into a gait
analysis paradigm [3–7] that allows us to reason about optimal gait patterns in terms of geometric
characteristics such as area and length, as illustrated in Fig. 1.

Applying these principles to systems that lack an analytical model remains an open area of
investigation. Although we have had been successful in using exhaustively exploring system dy-
namics to generate geometric models for simple empirically-observed systems [8, 9] this approach
becomes infeasible for high-dimensional systems, or when considering an animal whose motions we
cannot directly command.

To fill this gap, we are now combining the geometric paradigm with our (Revzen and collab-
orators) data-driven modeling toolset [10]. These tools leverage Floquet analysis [11] to extract
oscillator dynamics (in particular, their limit cycles) from observed data, and thus identify a motion
that the observed system is attempting to track [12–16]. In our new work, we are using the “noise”
in the Floquet model (from when the oscillator is away from its limit cycle) to construct a “fat
path” model of the system dynamics in the vicinity of the gait, as illustrated in Fig. 2.

This combined model leverages the deep insight provided by the geometric gait analysis paradigm
together with the data-driven Floquet model’s ability to extract meaning from noisy experimental
data. The fat path contains specifically the information required for our geometric tools to deter-
mine a gradient of optimality for the gait cycle. Additionally, the geometric structures inform the
data-driven tools that certain components of the system model are irrelevant to gait optimality and
do not need to be computed.

y
b

↵1

↵2

x
b

(x, y, �) 1.5

0

-1.5 1.50

-1.5

↵1

↵2

Curvature

curl + 
Lie bracket

Constraints

�xb/gait(a) (b) (c)

(d)

0.23

0.23

Maximum-displacement 
stroke 

(encloses whole 
sign-definite region)

Maximum-efficiency
stroke

(best ratio of enclosure 
to perimeter length)

0

0

-0.14

-0.14

Figure 1: Key elements of our geometric paradigm. Gait displacement depends on how much
curvature of the constraints the gait encompasses, and the time-effort cost of executing this gait is
the length of the path it traces out in the shape space.
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Figure 2: Our data-driven geometric paradigm takes uses the distribution of data samples around
the gait cycle identified via Floquet theory (a) to construct a “fat path” model of the system
dynamics in the vicinity of the gait (b). At each point on the cycle, we can use the curvature
(generalized curl; Lie bracket) to assess the effect that perturbing the gait will have on the net
displacement it induces. Here (c) the curvature is in the direction opposite to the gait cycle, so the
net displacement can be increased by drawing the gait cycle inward along the e⊥ direction.
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